Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
Sci Rep ; 14(1): 9355, 2024 04 23.
Article En | MEDLINE | ID: mdl-38654093

Thyroid hormones (TH) play critical roles during nervous system development and patients carrying coding variants of MCT8 (monocarboxylate transporter 8) or THRA (thyroid hormone receptor alpha) present a spectrum of neurological phenotypes resulting from perturbed local TH action during early brain development. Recently, human cerebral organoids (hCOs) emerged as powerful in vitro tools for disease modelling recapitulating key aspects of early human cortex development. To begin exploring prospects of this model for thyroid research, we performed a detailed characterization of the spatiotemporal expression of MCT8 and THRA in developing hCOs. Immunostaining showed MCT8 membrane expression in neuronal progenitor cell types including early neuroepithelial cells, radial glia cells (RGCs), intermediate progenitors and outer RGCs. In addition, we detected robust MCT8 protein expression in deep layer and upper layer neurons. Spatiotemporal SLC16A2 mRNA expression, detected by fluorescent in situ hybridization (FISH), was highly concordant with MCT8 protein expression across cortical cell layers. FISH detected THRA mRNA expression already in neuroepithelium before the onset of neurogenesis. THRA mRNA expression remained low in the ventricular zone, increased in the subventricular zone whereas strong THRA expression was observed in excitatory neurons. In combination with a robust up-regulation of known T3 response genes following T3 treatment, these observations show that hCOs provide a promising and experimentally tractable model to probe local TH action during human cortical neurogenesis and eventually to model the consequences of impaired TH function for early cortex development.


Cerebral Cortex , Monocarboxylic Acid Transporters , Neurogenesis , Organoids , RNA, Messenger , Symporters , Thyroid Hormone Receptors alpha , Female , Humans , Pregnancy , Cerebral Cortex/embryology , Cerebral Cortex/metabolism , Gene Expression Regulation, Developmental , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Neurogenesis/genetics , Neurons/metabolism , Organoids/metabolism , Pregnancy Trimester, First/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Symporters/genetics , Symporters/metabolism , Thyroid Hormone Receptors alpha/genetics , Thyroid Hormone Receptors alpha/metabolism , Thyroid Hormones/metabolism , Thyroid Hormones/genetics
2.
Thyroid ; 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38526409

Background: Thyroid hormones regulate cardiac functions mainly through direct actions in the heart and by binding to the thyroid hormone receptor (TR) isoforms α1 and ß. While the role of the most abundantly expressed isoform, TRα1, is widely studied and well characterized, the role of TRß in regulating heart functions is still poorly understood, primarily due to the accompanying elevation of circulating thyroid hormone in TRß knockout mice (TRß-KO). However, their hyperthyroidism is ameliorated at thermoneutrality, which allows studying the role of TRß without this confounding factor. Methods: Here, we noninvasively monitored heart rate in TRß-KO mice over several days using radiotelemetry at different housing temperatures (22°C and 30°C) and upon 3,3',5-triiodothyronine (T3) administration in comparison to wild-type animals. Results: TRß-KO mice displayed normal average heart rate at both 22°C and 30°C with only minor changes in heart rate frequency distribution, which was confirmed by independent electrocardiogram recordings in freely-moving conscious mice. Parasympathetic nerve activity was, however, impaired in TRß-KO mice at 22°C, and only partly rescued at 30°C. As expected, oral treatment with pharmacological doses of T3 at 30°C led to tachycardia in wild-types, accompanied by broader heart rate frequency distribution and increased heart weight. The TRß-KO mice, in contrast, showed blunted tachycardia, as well as resistance to changes in heart rate frequency distribution and heart weight. At the molecular level, these observations were paralleled by a blunted cardiac mRNA induction of several important genes, including the pacemaker channels Hcn2 and Hcn4, as well as Kcna7. Conclusions: The phenotyping of TRß-KO mice conducted at thermoneutrality allows novel insights on the role of TRß in cardiac functions in the absence of the usual confounding hyperthyroidism. Even though TRß is expressed at lower levels than TRα1 in the heart, our findings demonstrate an important role for this isoform in the cardiac response to thyroid hormones.

3.
Stem Cell Res ; 73: 103256, 2023 12.
Article En | MEDLINE | ID: mdl-38006677

The X-linked Allan-Herndon-Dudley syndrome (AHDS) is characterized by severely impaired psychomotor development and is caused by mutations in the SLC16A2 gene encoding the thyroid hormone transporter MCT8 (monocarboxylate transporter 8). By targeting exon 3 of SLC16A2 using CRISPR/Cas9 with single-stranded oligodeoxynucleotides as homology-directed repair templates, we introduced the AHDS patient missense variant G401R and a novel knock-out deletion variant (F400Sfs*17) into the male healthy donor hiPSC line BIHi001-B. We successfully generated cerebral organoids from these genome-edited lines, demonstrating the utility of the novel lines for modelling the effects of MCT8-deficency on human neurodevelopment.


Induced Pluripotent Stem Cells , Mental Retardation, X-Linked , Symporters , Humans , Male , Thyroid Hormones , Mutation , Monocarboxylic Acid Transporters/genetics , Mental Retardation, X-Linked/genetics , Symporters/genetics
4.
Sci Transl Med ; 15(705): eadg1659, 2023 07 19.
Article En | MEDLINE | ID: mdl-37467315

Increasing evidence points toward epigenetic variants as a risk factor for developing obesity. We analyzed DNA methylation of the POMC (pro-opiomelanocortin) gene, which is pivotal for satiety regulation. We identified sex-specific and nongenetically determined POMC hypermethylation associated with a 1.4-fold (confidence interval, 1.03 to 2.04) increased individual risk of developing obesity. To investigate the early embryonic establishment of POMC methylation states, we established a human embryonic stem cell (hESC) model. Here, hESCs (WA01) were transferred into a naïve state, which was associated with a reduction of DNA methylation. Naïve hESCs were differentiated via a formative state into POMC-expressing hypothalamic neurons, which was accompanied by re-establishment of DNA methylation patterning. We observed that reduced POMC gene expression was associated with increased POMC methylation in POMC-expressing neurons. On the basis of these findings, we treated POMC-hypermethylated obese individuals (n = 5) with an MC4R agonist and observed a body weight reduction of 4.66 ± 2.16% (means ± SD) over a mean treatment duration of 38.4 ± 26.0 weeks. In summary, we identified an epigenetic obesity risk variant at the POMC gene fulfilling the criteria for a metastable epiallele established in early embryonic development that may be addressable by MC4R agonist treatment to reduce body weight.


Obesity , Pro-Opiomelanocortin , Male , Pregnancy , Female , Humans , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Obesity/genetics , Obesity/metabolism , Body Weight/physiology , DNA Methylation/genetics , Risk Factors , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism
5.
Development ; 150(10)2023 05 15.
Article En | MEDLINE | ID: mdl-37191061

Thyroid tissue, the site of de novo thyroid hormone biosynthesis, is derived from ventral pharyngeal endoderm and defects in morphogenesis are a predominant cause of congenital thyroid diseases. The first molecularly recognizable step of thyroid development is the specification of thyroid precursors in anterior foregut endoderm. Recent studies have identified crucial roles of FGF and BMP signaling in thyroid specification, but the interplay between signaling cues and thyroid transcription factors remained elusive. By analyzing Pax2a and Nkx2.4b expression dynamics in relation to endodermal FGF and BMP signaling activities in zebrafish embryos, we identified a Pax2a-expressing thyroid progenitor population that shows enhanced FGF signaling but lacks Nkx2.4b expression and BMP signaling. Concurrent with upregulated BMP signaling, a subpopulation of these progenitors subsequently differentiates into lineage-committed thyroid precursors co-expressing Pax2a and Nkx2.4b. Timed manipulation of FGF/BMP activities suggests a model in which FGF signaling primarily regulates Pax2a expression, whereas BMP signaling regulates both Pax2a and Nkx2.4b expression. Our observation of similar expression dynamics of Pax8 and Nkx2-1 in mouse embryos suggests that this refined model of thyroid cell specification is evolutionarily conserved in mammals.


Fibroblast Growth Factors , Zebrafish , Animals , Mice , Zebrafish/genetics , Zebrafish/metabolism , Fibroblast Growth Factors/metabolism , Thyroid Gland , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Signal Transduction/genetics , Gene Expression Regulation, Developmental , Endoderm/metabolism , Mammals/metabolism
6.
Hum Mol Genet ; 31(23): 3967-3974, 2022 11 28.
Article En | MEDLINE | ID: mdl-35535691

Congenital hypothyroidism due to thyroid dysgenesis (TD), presented as thyroid aplasia, hypoplasia or ectopia, is one of the most prevalent rare diseases with an isolated organ malformation. The pathogenesis of TD is largely unknown, although a genetic predisposition has been suggested. We performed a genome-wide association study (GWAS) with 142 Japanese TD cases and 8380 controls and found a significant locus at 2q33.3 (top single nucleotide polymorphism, rs9789446: P = 4.4 × 10-12), which was replicated in a German patient cohort (P = 0.0056). A subgroup analysis showed that rs9789446 confers a risk for thyroid aplasia (per allele odds ratio = 3.17) and ectopia (3.12) but not for hypoplasia. Comprehensive epigenomic characterization of the 72-kb disease-associated region revealed that it was enriched for active enhancer signatures in human thyroid. Analysis of chromosome conformation capture data showed long-range chromatin interactions of this region with promoters of two genes, FZD5 and CCNYL1, mediating Wnt signaling. Moreover, rs9789446 was found to be a thyroid-specific quantitative trait locus, adding further evidence for a cis-regulatory function of this region in thyroid tissue. Specifically, because the risk rs9789446 allele is associated with increased thyroidal expression of FDZ5 and CCNYL1 and given the recent demonstration of perturbed early thyroid development following overactivation of Wnt signaling in zebrafish embryos, an enhanced Wnt signaling in risk allele carriers provides a biologically plausible TD mechanism. In conclusion, our work found the first risk locus for TD, exemplifying that in rare diseases with relatively low biological complexity, GWAS may provide mechanistic insights even with a small sample size.


Genome-Wide Association Study , Thyroid Dysgenesis , Animals , Humans , Zebrafish/genetics , Wnt Signaling Pathway/genetics , Rare Diseases , Thyroid Dysgenesis/genetics , Genetic Predisposition to Disease
7.
Exp Clin Endocrinol Diabetes ; 130(2): 134-140, 2022 Feb.
Article En | MEDLINE | ID: mdl-34352913

The monocarboxylate transporter 8 (MCT8) is a specific thyroid hormone transporter and plays an essential role in fetal development. Inactivating mutations in the MCT8 encoding gene SLC16A2 (solute carrier family 16, member 2) lead to the Allan-Herndon-Dudley syndrome, a condition presenting with severe endocrinological and neurological phenotypes. However, the cellular distribution pattern and dynamic expression profile are still not well known for early human neural development. OBJECTIVE: Development and characterization of fluorescent MCT8 reporters that would permit live-cell monitoring of MCT8 protein expression in vitro in human induced pluripotent stem cell (hiPSC)-derived cell culture models. METHODS: A tetracysteine (TC) motif was introduced into the human MCT8 sequence at four different positions as binding sites for fluorescent biarsenical dyes. Human Embryonic Kidney 293 cells were transfected and stained with fluorescein-arsenical hairpin-binder (FlAsH). Counterstaining with specific MCT8 antibody was performed. Triiodothyronine (T3) uptake was indirectly measured with a T3 responsive luciferase-based reporter gene assay in Madin-Darby Canine Kidney 1 cells for functional characterization. RESULTS: FlAsH staining and antibody counterstaining of all four constructs showed cell membrane expression of all MCT8 constructs. The construct with the tag after the first start codon demonstrated comparable T3 uptake to the MCT8 wildtype. CONCLUSION: Our data indicate that introduction of a TC-tag directly after the first start codon generates a MCT8 reporter with suitable characteristics for live-cell monitoring of MCT8 expression. One promising future application will be generation of stable hiPSC MCT8 reporter lines to characterize MCT8 expression patterns during in vitro neuronal development.


Gene Expression , Monocarboxylic Acid Transporters , Symporters , Fluorescein , Fluorescent Dyes , HEK293 Cells , Humans , Induced Pluripotent Stem Cells , Staining and Labeling
8.
J Clin Endocrinol Metab ; 106(9): 2606-2616, 2021 08 18.
Article En | MEDLINE | ID: mdl-34036349

CONTEXT: Pro-opiomelanocortin (POMC) and the melanocortin-4 receptor (MC4R) play a pivotal role in the leptin-melanocortin pathway. Mutations in these genes lead to monogenic types of obesity due to severe hyperphagia. In addition to dietary-induced obesity, a cardiac phenotype without hypertrophy has been identified in MC4R knockout mice. OBJECTIVE: We aimed to characterize cardiac morphology and function as well as tissue Na+ content in humans with mutations in POMC and MC4R genes. METHODS: A cohort of 42 patients (5 patients with bi-allelic POMC mutations, 6 heterozygous MC4R mutation carriers, 19 obese controls without known monogenic cause, and 12 normal weight controls) underwent cardiac magnetic resonance (CMR) imaging and 23Na-MRI. RESULTS: Monogenic obese patients with POMC or MC4R mutation respectively had a significantly lower left ventricular mass/body surface area (BSA) than nonmonogenic obese patients. Left ventricular end-diastolic volume/BSA was significantly lower in POMC- and MC4R-deficient patients than in nonmonogenic obese patients. Subcutaneous fat and skin Na+ content was significantly higher in POMC- and MC4R-deficient patients than in nonmonogenic obese patients. In these compartments, the water content was significantly higher in patients with POMC and MC4R mutation than in control groups. CONCLUSION: Patients with POMC or MC4R mutations carriers had a lack of transition to hypertrophy, significantly lower cardiac muscle mass/BSA, and stored more Na+ within the subcutaneous fat tissue than nonmonogenic obese patients. The results point towards the role of the melanocortin pathway for cardiac function and tissue Na+ storage and the importance of including cardiologic assessments into the diagnostic work-up of these patients.


Hypertrophy, Left Ventricular/etiology , Mutation , Pro-Opiomelanocortin/genetics , Receptor, Melanocortin, Type 4/genetics , Sodium/metabolism , Ventricular Function, Left/physiology , Adolescent , Body Water/metabolism , Female , Humans , Hypertrophy, Left Ventricular/genetics , Magnetic Resonance Imaging , Male , Obesity/complications , Phenotype , Pro-Opiomelanocortin/physiology , Receptor, Melanocortin, Type 4/physiology
9.
Thyroid ; 31(3): 420-438, 2021 03.
Article En | MEDLINE | ID: mdl-32777984

Background: Congenital hypothyroidism due to thyroid dysgenesis is a frequent congenital endocrine disorder for which the molecular mechanisms remain unresolved in the majority of cases. This situation reflects, in part, our still limited knowledge about the mechanisms involved in the early steps of thyroid specification from the endoderm, in particular the extrinsic signaling cues that regulate foregut endoderm patterning. In this study, we used small molecules and genetic zebrafish models to characterize the role of various signaling pathways in thyroid specification. Methods: We treated zebrafish embryos during different developmental periods with small-molecule compounds known to manipulate the activity of Wnt signaling pathway and observed effects in thyroid, endoderm, and cardiovascular development using whole-mount in situ hybridization and transgenic fluorescent reporter models. We used the antisense morpholino (MO) technique to create a zebrafish acardiac model. For thyroid rescue experiments, bone morphogenetic protein (BMP) pathway induction in zebrafish embryos was obtained by manipulation of heat-shock inducible transgenic lines. Results: Combined analyses of thyroid and cardiovascular development revealed that overactivation of Wnt signaling during early development leads to impaired thyroid specification concurrent with severe defects in the cardiac specification. When using a model of MO-induced blockage of cardiomyocyte differentiation, a similar correlation was observed, suggesting that defective signaling between cardiac mesoderm and endodermal thyroid precursors contributes to thyroid specification impairment. Rescue experiments through transient overactivation of BMP signaling could partially restore thyroid specification in models with defective cardiac development. Conclusion: Collectively, our results indicate that BMP signaling is critically required for thyroid cell specification and identify cardiac mesoderm as a likely source of BMP signals.


Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 4/metabolism , Congenital Hypothyroidism/metabolism , Cytoskeletal Proteins/metabolism , Heart Defects, Congenital/metabolism , Myocytes, Cardiac/metabolism , Thyroid Dysgenesis/metabolism , Thyroid Gland/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway , Zebrafish Proteins/metabolism , Animals , Animals, Genetically Modified , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 4/genetics , Congenital Hypothyroidism/genetics , Congenital Hypothyroidism/pathology , Cytoskeletal Proteins/genetics , Disease Models, Animal , Embryonic Development , Endoderm/abnormalities , Endoderm/metabolism , Gene Expression Regulation, Developmental , Heart Defects, Congenital/genetics , Heart Defects, Congenital/pathology , Mesoderm/abnormalities , Mesoderm/metabolism , Morpholinos/genetics , Morpholinos/metabolism , Myocytes, Cardiac/pathology , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/metabolism , Thyroid Dysgenesis/genetics , Thyroid Dysgenesis/pathology , Thyroid Gland/abnormalities , Wnt Proteins/genetics , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics
10.
Proc Natl Acad Sci U S A ; 117(47): 29684-29690, 2020 11 24.
Article En | MEDLINE | ID: mdl-33184177

Battling metastasis through inhibition of cell motility is considered a promising approach to support cancer therapies. In this context, Ena/VASP-depending signaling pathways, in particular interactions with their EVH1 domains, are promising targets for pharmaceutical intervention. However, protein-protein interactions involving proline-rich segments are notoriously difficult to address by small molecules. Hence, structure-based design efforts in combination with the chemical synthesis of additional molecular entities are required. Building on a previously developed nonpeptidic micromolar inhibitor, we determined 22 crystal structures of ENAH EVH1 in complex with inhibitors and rationally extended our library of conformationally defined proline-derived modules (ProMs) to succeed in developing a nanomolar inhibitor ([Formula: see text] Da). In contrast to the previous inhibitor, the optimized compounds reduced extravasation of invasive breast cancer cells in a zebrafish model. This study represents an example of successful, structure-guided development of low molecular weight inhibitors specifically and selectively addressing a proline-rich sequence-recognizing domain that is characterized by a shallow epitope lacking defined binding pockets. The evolved high-affinity inhibitor may now serve as a tool in validating the basic therapeutic concept, i.e., the suppression of cancer metastasis by inhibiting a crucial protein-protein interaction involved in actin filament processing and cell migration.


Breast Neoplasms/drug therapy , Cell Adhesion Molecules/metabolism , DNA-Binding Proteins/metabolism , Microfilament Proteins/metabolism , Phosphoproteins/metabolism , Protein Interaction Domains and Motifs/drug effects , Small Molecule Libraries/pharmacology , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Female , Humans , Jurkat Cells , Proline/metabolism , Protein Binding/drug effects , Zebrafish
11.
Thyroid ; 30(9): 1366-1383, 2020 09.
Article En | MEDLINE | ID: mdl-32143555

Background: Mutations of monocarboxylate transporter 8 (MCT8), a thyroid hormone (TH)-specific transmembrane transporter, cause a severe neurodevelopmental disorder, the Allan-Herndon-Dudley syndrome. In MCT8 deficiency, TH is not able to reach those areas of the brain where TH uptake depends on MCT8. Currently, therapeutic options for MCT8-deficient patients are missing, as TH treatment is not successful in improving neurological deficits. Available data on MCT8 protein and transcript levels indicate complex expression patterns in neural tissue depending on species, brain region, sex, and age. However, information on human MCT8 expression is still scattered and additional efforts are needed to map sites of MCT8 expression in neurovascular units and neural tissue. This is of importance because new therapeutic strategies for this disease are urgently needed. Methods: To identify regions and time windows of MCT8 expression, we used highly specific antibodies against MCT8 to perform immunofluorescence labeling of postnatal murine brains, adult human brain tissue, and human cerebral organoids. Results: Qualitative and quantitative analyses of murine brain samples revealed stable levels of MCT8 protein expression in endothelial cells of the blood-brain barrier (BBB), choroid plexus epithelial cells, and tanycytes during postnatal development. Conversely, the neuronal MCT8 protein expression that was robustly detectable in specific brain regions of young mice strongly declined with age. Similarly, MCT8 immunoreactivity in adult human brain tissue was largely confined to endothelial cells of the BBB. Recently, cerebral organoids emerged as promising models of human neural development and our first analyses of forebrain-like organoids revealed MCT8 expression in early neuronal progenitor cell populations. Conclusions: With respect to MCT8-deficient conditions, our analyses not only strongly support the contention that the BBB presents a lifelong barrier to TH uptake but also highlight the need to decipher the TH transport role of MCT8 in early neuronal cell populations in more detail. Improving the understanding of the spatiotemporal expression in latter barriers will be critical for therapeutic strategies addressing MCT8 deficiency in the future.


Gene Expression Regulation , Monocarboxylic Acid Transporters/biosynthesis , Mutation , Symporters/biosynthesis , Aged , Aged, 80 and over , Animals , Brain/metabolism , Cell Line , Dogs , Endothelial Cells/metabolism , Gene Expression Profiling , Humans , Mental Retardation, X-Linked/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Hypotonia/metabolism , Muscular Atrophy/metabolism , Neurogenesis , Neurons/metabolism , Prosencephalon/metabolism , Triiodothyronine/metabolism
12.
Mol Cell Endocrinol ; 500: 110635, 2020 01 15.
Article En | MEDLINE | ID: mdl-31678421

Thyroid hormone (TH) synthesis requires extracellular hydrogen peroxide generated by the NADPH oxidases, DUOX1 and DUOX2, with maturation factors, DUOXA1 and DUOXA2. In zebrafish, only one duox and one duoxa gene are present. Using a thyroid-specific reporter line, we investigated the role of Duox and Duoxa for TH biosynthesis in zebrafish larvae. Analysis of several zebrafish duox and duoxa mutant models consistently recovered hypothyroid phenotypes with hyperplastic goiter caused by impaired TH synthesis. Mutant larvae developed enlarged thyroids and showed increased expression of the EGFP reporter and thyroid functional markers including wild-type and mutated duox and duoxa transcripts. Treatment of zebrafish larvae with the NADPH oxidase inhibitor VAS2870 phenocopied the thyroid effects observed in duox or duoxa mutants. Additional functional in vitro assays corroborated the pharmacological inhibition of Duox activity by VAS2870. These data support the utility of this new experimental model to characterize endocrine disruptors of the thyroid function.


Benzoxazoles/pharmacology , Dual Oxidases/genetics , Goiter/genetics , Hydrogen Peroxide/metabolism , NADPH Oxidases/genetics , Thyroid Hormones/biosynthesis , Triazoles/pharmacology , Zebrafish Proteins/genetics , Animals , Disease Models, Animal , Dual Oxidases/metabolism , Gene Expression Regulation/drug effects , Gene Regulatory Networks/drug effects , Goiter/metabolism , Mutation , NADPH Oxidases/metabolism , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism
13.
Thyroid ; 29(11): 1683-1703, 2019 11.
Article En | MEDLINE | ID: mdl-31507237

Background: Defects in embryonic development of the thyroid gland are a major cause for congenital hypothyroidism in human newborns, but the underlying molecular mechanisms are still poorly understood. Organ development relies on a tightly regulated interplay between extrinsic signaling cues and cell intrinsic factors. At present, however, there is limited knowledge about the specific extrinsic signaling cues that regulate foregut endoderm patterning, thyroid cell specification, and subsequent morphogenetic processes in thyroid development. Methods: To begin to address this problem in a systematic way, we used zebrafish embryos to perform a series of in vivo phenotype-driven chemical genetic screens to identify signaling cues regulating early thyroid development. For this purpose, we treated zebrafish embryos during different developmental periods with a panel of small-molecule compounds known to manipulate the activity of major signaling pathways and scored phenotypic deviations in thyroid, endoderm, and cardiovascular development using whole-mount in situ hybridization and transgenic fluorescent reporter models. Results: Systematic assessment of drugged embryos recovered a range of thyroid phenotypes including expansion, reduction or lack of the early thyroid anlage, defective thyroid budding, as well as hypoplastic, enlarged, or overtly disorganized presentation of the thyroid primordium after budding. Our pharmacological screening identified bone morphogenetic protein and fibroblast growth factor signaling as key factors for thyroid specification and early thyroid organogenesis, highlighted the importance of low Wnt activities during early development for thyroid specification, and implicated drug-induced cardiac and vascular anomalies as likely indirect mechanisms causing various forms of thyroid dysgenesis. Conclusions: By integrating the outcome of our screening efforts with previously available information from other model organisms including Xenopus, chicken, and mouse, we conclude that signaling cues regulating thyroid development appear broadly conserved across vertebrates. We therefore expect that observations made in zebrafish can inform mammalian models of thyroid organogenesis to further our understanding of the molecular mechanisms of congenital thyroid diseases.


Embryo, Nonmammalian , Signal Transduction/genetics , Thyroid Gland/embryology , Zebrafish/genetics , Animals , Bone Morphogenetic Proteins/genetics , Embryonic Development/drug effects , Embryonic Development/genetics , Fibroblast Growth Factors/genetics , Gene Expression Regulation, Developmental , High-Throughput Screening Assays , Intercellular Signaling Peptides and Proteins/genetics , Organisms, Genetically Modified , Phenotype , Small Molecule Libraries , Thyroid Dysgenesis/genetics , Thyroid Gland/abnormalities
15.
Nat Commun ; 7: 13047, 2016 10 20.
Article En | MEDLINE | ID: mdl-27762274

Interaction mapping is a powerful strategy to elucidate the biological function of protein assemblies and their regulators. Here, we report the generation of a quantitative interaction network, directly linking 14 human proteins to the AAA+ ATPase p97, an essential hexameric protein with multiple cellular functions. We show that the high-affinity interacting protein ASPL efficiently promotes p97 hexamer disassembly, resulting in the formation of stable p97:ASPL heterotetramers. High-resolution structural and biochemical studies indicate that an extended UBX domain (eUBX) in ASPL is critical for p97 hexamer disassembly and facilitates the assembly of p97:ASPL heterotetramers. This spontaneous process is accompanied by a reorientation of the D2 ATPase domain in p97 and a loss of its activity. Finally, we demonstrate that overproduction of ASPL disrupts p97 hexamer function in ERAD and that engineered eUBX polypeptides can induce cell death, providing a rationale for developing anti-cancer polypeptide inhibitors that may target p97 activity.


Endoplasmic Reticulum-Associated Degradation/physiology , Oncogene Proteins, Fusion/metabolism , Protein Domains/physiology , Valosin Containing Protein/metabolism , Brain/pathology , Cell Proliferation , Crystallography, X-Ray , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins , Mutation , Oncogene Proteins, Fusion/chemistry , Oncogene Proteins, Fusion/isolation & purification , Peptides/genetics , Peptides/metabolism , Protein Binding , Protein Engineering , Protein Interaction Maps , Protein Multimerization , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Valosin Containing Protein/chemistry , Valosin Containing Protein/isolation & purification
16.
Aquat Toxicol ; 177: 63-73, 2016 Aug.
Article En | MEDLINE | ID: mdl-27262936

The synthetic gestagen levonorgestrel (LNG) was previously shown to perturb thyroid hormone-dependent metamorphosis in Xenopus laevis. However, so far the mechanisms underlying the anti-metamorphic effects of LNG remained unknown. Therefore, a series of in vivo and ex vivo experiments was performed to identify potential target sites of LNG action along the pituitary-thyroid axis of X. laevis tadpoles. Prometamorphic tadpoles were treated in vivo with LNG (0.01-10nM) for 72h and brain-pituitary and thyroid tissue was analyzed for marker gene expression. While no treatment-related changes were observed in brain-pituitary tissue, LNG treatment readily affected thyroidal gene expression in tadpoles including decreased slc5a5 and iyd mRNA expression and a strong induction of dio2 and dio3 expression. When using an ex vivo organ explant culture approach, direct effects of LNG on both pituitary and thyroid gland gene expression were detecTable Specifically, treatment of pituitary explants with 10nM LNG strongly stimulated dio2 expression and concurrently suppressed tshb expression. In thyroid glands, ex vivo LNG treatment induced dio2 and dio3 mRNA expression in a thyrotropin-independent manner. When thyroid explants were cultured in thyrotropin-containing media, LNG caused similar gene expression changes as seen after 72h in vivo treatment including a very strong repression of thyrotropin-induced slc5a5 expression. Concerning the anti-thyroidal activity of LNG as seen under in vivo conditions, our ex vivo data provide clear evidence that LNG directly affects expression of genes important for thyroidal iodide handling as well as genes involved in negative feedback regulation of pituitary tshb expression.


Gene Expression Regulation, Developmental/drug effects , Levonorgestrel/toxicity , Pituitary Gland/drug effects , Thyroid Gland/drug effects , Xenopus laevis/physiology , Animals , Larva/drug effects , Male , Metamorphosis, Biological/drug effects , Progestins/genetics , Symporters/genetics , Thyrotropin/genetics , Water Pollutants, Chemical/toxicity , Xenopus laevis/growth & development
17.
Chemistry ; 21(23): 8464-70, 2015 Jun 01.
Article En | MEDLINE | ID: mdl-25906737

With the aim of developing polyproline type II helix (PPII) secondary-structure mimetics for the modulation of prolin-rich-mediated protein-protein interactions, the novel diproline mimetic ProM-2 was designed by bridging the two pyrrolidine rings of a diproline (Pro-Pro) unit through a Z-vinylidene moiety. This scaffold, which closely resembles a section of a PPII helix, was then stereoselectively synthesized by exploiting a ruthenium-catalyzed ring-closing metathesis (RCM) as a late key step. The required vinylproline building blocks, that is, (R)-N-Boc-2-vinylproline (Boc=tert-butyloxycarbonyl) and (S,S)-5-vinylproline-tert-butyl ester, were prepared on a gram scale as pure stereoisomers. The difficult peptide coupling of the sterically demanding building blocks was achieved in good yield and without epimerization by using 2-(1H-7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU)/N,N-diisopropylethylamine (DIPEA). The RCM proceeded smoothly in the presence of the Grubbs II catalyst. Stereostructural assignments for several intermediates were secured by X-ray crystallography. As a proof of concept, it was shown that certain peptides containing ProM-2 exhibited improved (canonical) binding towards the Ena/VASP homology 1 (EVH1) domain as a relevant protein interaction target.


Peptides/chemistry , Proteins/chemistry , Dipeptides/chemistry , Peptidomimetics , Protein Conformation , Stereoisomerism
18.
Proc Natl Acad Sci U S A ; 112(16): 5011-6, 2015 Apr 21.
Article En | MEDLINE | ID: mdl-25848013

Small-molecule competitors of protein-protein interactions are urgently needed for functional analysis of large-scale genomics and proteomics data. Particularly abundant, yet so far undruggable, targets include domains specialized in recognizing proline-rich segments, including Src-homology 3 (SH3), WW, GYF, and Drosophila enabled (Ena)/vasodilator-stimulated phosphoprotein (VASP) homology 1 (EVH1) domains. Here, we present a modular strategy to obtain an extendable toolkit of chemical fragments (ProMs) designed to replace pairs of conserved prolines in recognition motifs. As proof-of-principle, we developed a small, selective, peptidomimetic inhibitor of Ena/VASP EVH1 domain interactions. Highly invasive MDA MB 231 breast-cancer cells treated with this ligand showed displacement of VASP from focal adhesions, as well as from the front of lamellipodia, and strongly reduced cell invasion. General applicability of our strategy is illustrated by the design of an ErbB4-derived ligand containing two ProM-1 fragments, targeting the yes-associated protein 1 (YAP1)-WW domain with a fivefold higher affinity.


Proline-Rich Protein Domains , Protein Interaction Mapping , Animals , Cell Adhesion Molecules/chemistry , Cell Line, Tumor , Cell Membrane Permeability , Crystallography, X-Ray , Drosophila melanogaster/metabolism , Esterification , Fluorescent Antibody Technique , Humans , Kinetics , Ligands , Microfilament Proteins/chemistry , Models, Molecular , Molecular Weight , Peptides/chemistry , Phosphoproteins/chemistry , Protein Binding , Protein Structure, Tertiary , Pseudopodia , Stress Fibers/metabolism , Zyxin/chemistry
19.
Endocrinology ; 156(1): 377-88, 2015 Jan.
Article En | MEDLINE | ID: mdl-25353184

Congenital hypothyroidism caused by thyroid dysgenesis (CHTD) is a common congenital disorder with a birth prevalence of 1 case in 4000 live births, and up to 8% of individuals with CHTD have co-occurring congenital heart disease. Initially we found nine patients with cardiac and thyroid congenital disorders in our cohort of 158 CHTD patients. To enrich for a rare phenotype likely to be genetically simpler, we selected three patients with a ventricular septal defect for molecular studies. Then, to assess whether rare de novo copy number variants and coding mutations in candidate genes are a source of genetic susceptibility, we used a genome-wide single-nucleotide polymorphism array and Sanger sequencing to analyze blood DNA samples from selected patients with co-occurring CHTD a congenital heart disease. We found rare variants in all three patients, and we selected Netrin-1 as the biologically most plausible contributory factor for functional studies. In zebrafish, ntn1a and ntn1b were not expressed in thyroid tissue, but ntn1a was expressed in pharyngeal arch mesenchyme, and ntn1a-deficient embryos displayed defective aortic arch artery formation and abnormal thyroid morphogenesis. The functional activity of the thyroid in ntn1a-deficient larvae was, however, preserved. Phenotypic analysis of affected zebrafish indicates that abnormal thyroid morphogenesis resulted from a lack of proper guidance exerted by the dysplastic vasculature of ntn1a-deficient embryos. Hence, careful phenotyping of patients combined with molecular and functional studies in zebrafish identify Netrin-1 as a potential shared genetic factor for cardiac and thyroid congenital defects.


Cardiovascular Abnormalities/genetics , Gene Expression Regulation, Developmental/physiology , Genotype , Nerve Growth Factors/metabolism , Thyroid Dysgenesis/genetics , Tumor Suppressor Proteins/metabolism , Animals , Animals, Genetically Modified , Female , Gene Knockdown Techniques , Genetic Predisposition to Disease , Humans , Male , Morpholinos , Nerve Growth Factors/genetics , Netrin-1 , Polymorphism, Single Nucleotide , RNA, Messenger/genetics , RNA, Messenger/metabolism , Synaptotagmins/genetics , Synaptotagmins/metabolism , Tumor Suppressor Proteins/genetics , Zebrafish Proteins
...